Sign in →

Test Code SOFT: ZG042 Testosterone, Total and Free, Serum

Additional Codes

Ordering Mnemonic Mayo Test ID
EPIC NAME: TESTOSTERONE, TOTAL AND FREE TGRP

 EPIC CODE: LAB173

Reporting Name

Testosterone, Total and Free, S

Useful For

Alternative, second-level test for suspected increases or decreases in physiologically active testosterone:

-Assessment of androgen status in cases with suspected or known sex hormone-binding globulin-binding abnormalities

-Assessment of functional circulating testosterone in early pubertal boys and older men

-Assessment of functional circulating testosterone in women with symptoms or signs of hyperandrogenism but normal total testosterone levels

-Monitoring of testosterone therapy or antiandrogen therapy in older men and in female patients

Profile Information

Test ID Reporting Name Available Separately Always Performed
FRTST Testosterone, Free, S No Yes
TTST Testosterone, Total, S Yes Yes

Method Name

FRTST: Equilibrium Dialysis/Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

TTST: Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Specimen Type

Serum Red


Ordering Guidance


This is a second-level test for suspected increases or decreases in physiologically active testosterone. The preferred test for assessment of active testosterone is TTBS / Testosterone, Total and Bioavailable, Serum.



Necessary Information


Patient's age and sex are required.



Specimen Required


Supplies: Sarstedt Aliquot Tube, 5 mL (T914)

Collection Container/Tube: Red top (serum gel/SST are not acceptable)

Submission Container/Tube: Plastic vial

Specimen Volume: 2.5 mL

Collection Instructions: Centrifuge and aliquot serum into a plastic vial


Specimen Minimum Volume

1 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Serum Red Refrigerated (preferred) 14 days
  Frozen  60 days

Reject Due To

Gross hemolysis OK
Gross lipemia OK
Gross icterus OK

Special Instructions

Reference Values

TESTOSTERONE, FREE

Males (adult):

20-<25 years: 5.25-20.7 ng/dL

25-<30 years: 5.05-19.8 ng/dL

30-<35 years: 4.85-19.0 ng/dL

35-<40 years: 4.65-18.1 ng/dL

40-<45 years: 4.46-17.1 ng/dL

45-<50 years: 4.26-16.4 ng/dL

50-<55 years: 4.06-15.6 ng/dL

55-<60 years: 3.87-14.7 ng/dL

60-<65 years: 3.67-13.9 ng/dL

65-<70 years: 3.47-13.0 ng/dL

70-<75 years: 3.28-12.2 ng/dL

75-<80 years: 3.08-11.3 ng/dL

80-<85 years: 2.88-10.5 ng/dL

85-<90 years: 2.69-9.61 ng/dL

90-<95 years: 2.49-8.76 ng/dL

95-100+ years: 2.29-7.91 ng/dL

 

Males (children):

<1 year: Term infants

1-15 days: 0.20-3.10 ng/dL*

16 days-1 year: Values decrease gradually from newborn (0.20-3.10 ng/dL) to prepubertal levels

*Forest MG, Cathiard AM, Bertrand JA. Total and unbound testosterone levels in the newborn and in normal and hypogonadal children: use of a sensitive radioimmunoassay for testosterone. J Clin Endocrinol Metab. 1973;36(6):1132-1142

 

1-8 years: <0.13 ng/dL

9 years: <0.13-0.45 ng/dL

10 years: <0.13-1.26 ng/dL

11 years: <0.13-5.52 ng/dL

12 years: <0.13-9.28 ng/dL

13 years: <0.13-12.6 ng/dL

14 years: 0.48-15.3 ng/dL

15 years: 1.62-17.7 ng/dL

16 years: 2.93-19.5 ng/dL

17 years: 4.28-20.9 ng/dL

18 years: 5.40-21.8 ng/dL

19 years: 5.36-21.2 ng/dL

 

Females (adult):

20-<25 years: <0.13-1.08 ng/dL

25-<30 years: <0.13-1.06 ng/dL

30-<35 years: <0.13-1.03 ng/dL

35-<40 years: <0.13-1.00 ng/dL

40-<45 years: <0.13-0.98 ng/dL

45-<50 years: <0.13-0.95 ng/dL

50-<55 years: <0.13-0.92 ng/dL

55-<60 years: <0.13-0.90 ng/dL

60-<65 years: <0.13-0.87 ng/dL

65-<70 years: <0.13-0.84 ng/dL

70-<75 years: <0.13-0.82 ng/dL

75-<80 years: <0.13-0.79 ng/dL

80-<85 years: <0.13-0.76 ng/dL

85-<90 years: <0.13-0.73 ng/dL

90-<95 years: <0.13-0.71 ng/dL

95-100+ years: <0.13-0.68 ng/dL

 

Females (children):

<1 year: Term infants

1-15 days: <0.13-0.25 ng/dL*

16 days-1 year: Values decrease gradually from newborn (<0.13-0.25 ng/dL) to prepubertal levels

*Forest MG, Cathiard AM, Bertrand JA. Total and unbound testosterone levels in the newborn and in normal and hypogonadal children: use of a sensitive radioimmunoassay for testosterone. J Clin Endocrinol Metab. 1973;36(6):1132-1142

 

1-4 years: <0.13 ng/dL

5 years: <0.13 ng/dL

6 years: <0.14 ng/dL

7 years: <0.13-0.23 ng/dL

8 years: <0.13-0.34 ng/dL

9 years: <0.13-0.46 ng/dL

10 years: <0.13-0.59 ng/dL

11 years: <0.13-0.72 ng/dL

12 years: <0.13-0.84 ng/dL

13 years: <0.13-0.96 ng/dL

14 years: <0.13-1.06 ng/dL

15-18 years: <0.13-1.09 ng/dL

19 years: <0.13-1.08 ng/dL

 

TESTOSTERONE, TOTAL

Males

0-5 months: 75-400 ng/dL

6 months-9 years: <7-20 ng/dL

10-11 years: <7-130 ng/dL

12-13 years: <7-800 ng/dL

14 years: <7-1,200 ng/dL

15-16 years: 100-1,200 ng/dL

17-18 years: 300-1,200 ng/dL

≥19 years: 240-950 ng/dL

Tanner Stages**

I (prepubertal): <7-20

II: 8-66

III: 26-800

IV: 85-1,200

V (young adult): 300-950

 

Females

0-5 months: 20-80 ng/dL

6 months-9 years: <7-20 ng/dL

10-11 years: <7-44 ng/dL

12-16 years: <7-75 ng/dL

17-18 years: 20-75 ng/dL

≥19 years: 8-60 ng/dL

Tanner Stages**

I (prepubertal): <7-20

II: <7-47

III: 17-75

IV: 20-75

V (young adult): 12-60

 

**Puberty onset (transition from Tanner stage I to Tanner stage II) occurs for boys at a median age of 11.5 (±2) years and for girls at a median age of 10.5 (±2) years. There is evidence that it may occur up to 1 year earlier in obese girls and in African American girls. For boys, there is no definite proven relationship between puberty onset and body weight or ethnic origin. Progression through Tanner stages is variable. Tanner stage V (young adult) should be reached by age 18.

Day(s) Performed

Monday through Saturday

CPT Code Information

84402

84403

LOINC Code Information

Test ID Test Order Name Order LOINC Value
TGRP Testosterone, Total and Free, S 58952-3

 

Result ID Test Result Name Result LOINC Value
3631 Testosterone Free 2991-8
8533 Testosterone, Total, S 2986-8

Clinical Information

Testosterone is the major androgenic hormone. It is responsible for the development of the male external genitalia and secondary sexual characteristics. In female patients, its main role is as an estrogen precursor. In both sexes, it also exerts anabolic effects and influences behavior.

 

In men, testosterone is secreted by the testicular Leydig cells and, to a minor extent, by the adrenal cortex. In premenopausal women, the ovaries are the main source of testosterone with minor contributions by the adrenals and peripheral tissues. After menopause, ovarian testosterone production is significantly diminished. Testosterone production in testes and ovaries is regulated via pituitary-gonadal feedback involving luteinizing hormone (LH) and, to a lesser degree, inhibins and activins. 

 

Most circulating testosterone is bound to sex hormone-binding globulin (SHBG), which, in men, also is called testosterone-binding globulin. A lesser fraction is albumin bound and a small proportion exists as free hormone. Historically, only free testosterone was thought to be the biologically active component. However, testosterone is weakly bound to serum albumin and dissociates freely in the capillary bed, thereby becoming readily available for tissue uptake. All non-SHBG-bound testosterone is therefore considered bioavailable.

 

 During childhood, excessive production of testosterone induces premature puberty in boys and masculinization in girls. In women, excess testosterone production results in varying degrees of virilization, including hirsutism, acne, oligo-amenorrhea, or infertility. Mild-to-moderate testosterone elevations are usually asymptomatic in male patients but can cause distressing symptoms in female patients. The exact causes for mild-to-moderate elevations in testosterone often remain obscure. Common causes of pronounced elevations of testosterone include genetic conditions (eg, congenital adrenal hyperplasia); adrenal, testicular, and ovarian tumors; and abuse of testosterone or gonadotrophins by athletes. 

 

Decreased testosterone in female patients causes subtle symptoms. These may include some decline in libido and nonspecific mood changes. In male patients, it results in partial or complete degrees of hypogonadism. This is characterized by changes in male secondary sexual characteristics and reproductive function. The cause is either primary or secondary/tertiary (pituitary/hypothalamic) testicular failure. In men, there also is a gradual modest but progressive decline in testosterone production starting between the fourth and sixth decades of life. Since this is associated with a simultaneous increase of SHBG levels, bioavailable testosterone may decline more significantly than apparent total testosterone, causing nonspecific symptoms similar to those observed in testosterone deficient women. However, severe hypogonadism, consequent to aging alone, is rare. 

 

Measurement of total testosterone (TTST / Testosterone, Total, Mass Spectrometry, Serum) is often sufficient for diagnosis, particularly if it is combined with measurements of LH and follicle-stimulating hormone (LH / Luteinizing Hormone [LH], Serum and FSH / Follicle-Stimulating Hormone [FSH], Serum). However, these tests may be insufficient for diagnosis of mild abnormalities of testosterone homeostasis, particularly if abnormalities in SHBG (SHBG1 / Sex Hormone-Binding Globulin, Serum) function or levels are present. Additional measurements of free testosterone or bioavailable testosterone are recommended in this situation; bioavailable (TTBS / Testosterone, Total and Bioavailable, Serum) is the preferred assay. 

 

For more information, see Steroid Pathways

Interpretation

Total testosterone and general interpretation of testosterone abnormalities:

In male patients:

Decreased testosterone levels indicate partial or complete hypogonadism. Serum testosterone levels are usually below the reference range. The cause is either primary or secondary/tertiary (pituitary/hypothalamic) testicular failure. 

Primary testicular failure is associated with increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and decreased total, bioavailable, and free testosterone levels. Causes include:

-Genetic causes (eg, Klinefelter syndrome, XXY males)

-Developmental causes (eg, testicular maldescent)

-Testicular trauma or ischemia (eg, testicular torsion, surgical mishap during hernia operations)

-Infections (eg, mumps)

-Autoimmune diseases (eg, autoimmune polyglandular endocrine failure)

-Metabolic disorders (eg, hemochromatosis, liver failure)

-Orchidectomy

Secondary/tertiary hypogonadism, also known as hypogonadotropic hypogonadism, shows low testosterone and low, or inappropriately "normal," LH/FSH levels; causes include:

-Inherited or developmental disorders of hypothalamus and pituitary (eg, Kallmann syndrome, congenital hypopituitarism)

-Pituitary or hypothalamic tumors

-Hyperprolactinemia of any cause

-Malnutrition or excessive exercise

-Cranial irradiation

-Head trauma

-Medical or recreational drugs (eg, estrogens, gonadotropin releasing hormone [GnRH] analogs, cannabis) 

 

Increased testosterone levels:

-In prepubertal boys, increased levels of testosterone are seen in precocious puberty. Further workup is necessary to determine the causes of precocious puberty.

-In adult men, testicular or adrenal tumors or androgen abuse might be suspected if testosterone levels exceed the upper limit of the normal range by more than 50%.

 

Monitoring of testosterone replacement therapy:

Aim of treatment is normalization of serum testosterone and LH. During treatment with depot-testosterone preparations, trough levels of serum testosterone should still be within the normal range, while peak levels should not be significantly above the normal young adult range. 

 

Monitoring of antiandrogen therapy:

Aim is usually to suppress testosterone levels to castrate levels or below (no more than 25% of the lower reference range value).

 

In female patients:

Decreased testosterone levels may be observed in primary or secondary ovarian failure, analogous to the situation in men, alongside the more prominent changes in female hormone levels. Most women with oophorectomy have a significant decrease in testosterone levels.

Increased testosterone levels may be seen in:

-Congenital adrenal hyperplasia: Non-classical (mild) variants may not present in childhood but during or after puberty. In addition to testosterone, multiple other androgens or androgen precursors are elevated, such as 17-hydroxyprogesterone (OHPG / 17-Hydroxyprogesterone, Serum), often to a greater degree than testosterone.

-Prepubertal girls: Analogous to boys, but at lower levels, increased levels of testosterone are seen in precocious puberty.

-Ovarian or adrenal neoplasms: High estrogen values also may be observed, and LH and FSH are low or "normal." Testosterone-producing ovarian or adrenal neoplasms often produce total testosterone values above 200 ng/dL.

-Polycystic ovarian syndrome: Hirsutism, acne, menstrual disturbances, insulin resistance and, frequently, obesity form part of this syndrome. Total testosterone levels may be normal or mildly elevated and uncommonly above 200 ng/dL.

 

Monitoring of testosterone replacement therapy:

The efficacy of testosterone replacement in female patients is under study. If it is used, total testosterone levels should always be kept within the normal range for females. Bioavailable or free testosterone levels also should be monitored to avoid over treatment.

 

 Monitoring of antiandrogen therapy:

Antiandrogen therapy is most frequently employed in the management of mild-to-moderate idiopathic female hyperandrogenism, as seen in polycystic ovarian syndrome. Total testosterone levels are a relatively crude guideline for therapy and can be misleading. Therefore, bioavailable or free testosterone also should be monitored to ensure treatment adequacy. However, there are no universally agreed biochemical end points and the primary treatment end point is the clinical response.

 

Free testosterone:

Usually, bioavailable and free testosterone levels parallel the total testosterone levels. However, a number of conditions and medications are known to increase or decrease the sex hormone-binding globulin (SHBG) concentration, which may cause total testosterone concentration to change without necessarily influencing the bioavailable or free testosterone concentration, or vice versa:

-Treatment with corticosteroids and sex steroids (particularly oral conjugated estrogen) can result in changes in SHBG levels and availability of sex-steroid binding sites on SHBG. This may make diagnosis of subtle testosterone abnormalities difficult.

-Inherited abnormalities in SHBG binding

-Liver disease and severe systemic illness

-In pubertal boys and adult men, mild decreases of total testosterone without LH abnormalities can be associated with delayed puberty or mild hypogonadism. In this case, either bioavailable or free testosterone measurements are better indicators of mild hypogonadism than determination of total testosterone levels.

-In polycystic ovarian syndrome and related conditions, there is often significant insulin resistance, which is associated with low SHBG levels. Consequently, bioavailable or free testosterone levels may be more significantly elevated.

 

Either bioavailable (TTBS / Testosterone, Total and Bioavailable, Serum) or free testosterone should be used as supplemental tests to total testosterone in the above situations. The correlation coefficient between bioavailable and free testosterone (by equilibrium dialysis) is 0.9606. However, bioavailable testosterone is usually the preferred test, as it more closely reflects total bioactive testosterone, particularly in older men; see TTBS / Testosterone, Total and Bioavailable, Serum. Older men not only have elevated SHBG levels, but albumin levels also may vary due to coexisting illnesses.

Cautions

Early-morning testosterone levels in young male individuals are, on average, 50% higher than p.m. levels. Reference values were established using specimens collected in the morning.

 

Testosterone levels can fluctuate substantially between different days and sometimes even more rapidly. Assessment of androgen status should be based on more than a single measurement.

 

The low end of the normal reference range for total testosterone in prepubertal subjects is not yet established.

 

While free testosterone can be used for the same indications as bioavailable testosterone, determination of bioavailable testosterone levels may be superior to free testosterone measurement in most situations.

Cautions

Early-morning testosterone levels in young male individuals are, on average, 50% higher than p.m. levels. Reference values were established using specimens collected in the morning.

 

Testosterone levels can fluctuate substantially between different days, and sometimes even more rapidly. Assessment of androgen status should be based on more than a single measurement.

 

The low end of the normal reference range for total testosterone in prepubertal subjects is not yet established.

 

While free testosterone can be used for the same indications as bioavailable testosterone, determination of bioavailable testosterone levels may be superior to free testosterone measurement in most situations.

Clinical Reference

1. Manni A, Pardridge WM, Cefalu W, et al. Bioavailability of albumin-bound testosterone. J Clin Endocrinol Metab. 1985;61(4):705-710

2. New MI, Josso N. Disorders of gonadal differentiation and congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 1988;17(2):339-366

3. Morley JE, Perry HM 3rd. Androgen deficiency in aging men: role of testosterone replacement therapy. J Lab Clin Med. 2000;135(5):370-378. doi:10.1067/mlc.2000.106455

4. Sizonenko PC, Paunier L. Hormonal changes in puberty III: Correlation of plasma dehydroepiandrosterone, testosterone, FSH, and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison's disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab. 1975;41(5):894-904. doi:10.1210/jcem-41-5-894

5. Goudas VT, Dumesic DA. Polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1997;26(4):893-912. doi:10.1016/s0889-8529(05)70286-3

6. Braunstein GD. Androgen insufficiency in women: summary of critical issues. Fertil Steril. 2002;77 Suppl 4:S94-S99. doi:10.1016/s0015-0282(02)02962-x

7. Juul A, Skakkebaek NE. Androgens and the ageing male. Hum Reprod Update. 2002;8(5):423-433. doi:10.1093/humupd/8.5.423

8. Hackbarth JS, Hoyne JB, Grebe SK, Singh RJ. Accuracy of calculated free testosterone differs between equations and depends on gender and SHBG concentration. Steroids. 2011;76(1-2):48-55. doi:10.1016/j.steroids.2010.08.008

9. Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R. A reappraisal of testosterone's binding in circulation: Physiological and clinical implications. Endocr Rev. 2017;38(4):302-324. doi:10.1210/er.2017-00025

Report Available

3 to 8 days

Specimen Retention Time

2 weeks

Method Description

Free Testosterone:

This method utilizes equilibrium dialysis to analyze and determine the host serum’s binding capacity for testosterone. Patient sample is placed inside a dialysis well that is immersed in dialysis buffer. The sample is dialyzed. During buffered dialysis, any testosterone that is unbound to sex hormone-binding globulin or albumin is free to pass through the semi-permeable dialysis membrane, while testosterone molecules bound to the binding proteins will be held inside the membrane. After dialysis, the buffered dialysate is analyzed for free testosterone by liquid chromatography tandem mass spectrometry (LC-MS/MS) with stable isotope (testosterone-[13]C3) after derivatization.(Unpublished Mayo method)

 

Total Testosterone:

Deuterated stable isotope (d3-testosterone) is added to a serum sample as internal standard. Protein is precipitated from the mixture. The testosterone and internal standard are extracted from the resulting supernatant by an on-line extraction utilizing high-throughput liquid chromatography. This is followed by conventional liquid chromatography and analysis on a tandem mass spectrometer equipped with a heated nebulizer ion source. Epitestosterone does not interfere with this LC-MS/MS method for total testosterone.(Unpublished Mayo method)

Forms

If not ordering electronically, complete, print, and send a General Request (T239) with the specimen.

Secondary ID

8508

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.